Thursday, June 12, 2014

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 38

Differentiate $\displaystyle y = \frac{x^3 - 1}{x^2 + 1 } + 4x^3$
By applying long division, we get



Thus,
$\displaystyle y = \left[ x + \frac{-x - 1}{x^2 + 1} \right] + 4x^3$

Then, by taking the derivative, we obtain

$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} (x) + \frac{(x^2 + 1) \cdot \frac{d}{dx} ( - x - 1) - ( - x - 1) \cdot \frac{d}{dx} (x^2 + 1 )}{(x^2 + 1)^2} + \frac{d}{dx} (4x^3)\\
\\
y' &= 1 + \frac{(x^2 + 1)(-1) - (-x-1)(2x)}{(x^2 +1)^2} + 12x^2\\
\\
y' &= 1 + \left[ \frac{-x^2 -1 + 2^2 + 2x}{(x^2 +1)^2} \right] + 12x^2\\
\\
y' &= 1 + \left[ \frac{x^2 + 2x - 1}{(x^2 + 1)^2} \right] + 12x^2 \\
\\
y' &= \frac{(x^2 + 1)^2 + x^2 + 2x - 1+ 12x^2 (x^2 + 1)^2}{(x^2 + 1)^2}\\
\\
y' &= \frac{x^4 + 2x^2 + 1 + x^2 + 2x - 1 + 12 x^6 + 24x^4 + 12x^2}{(x^2 + 1)^2}\\
\\
y' &= \frac{12x^6 + 25x^4 + 15x^2 + 2x}{(x^2 + 1)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...