Monday, June 23, 2014

Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 22

Determine a.) the domain of $f(x) = \ln (2 + \ln x)$ and b.) $f^{-1}$ and its domain.

a.) The domain of the given function, should be


$
\begin{equation}
\begin{aligned}

& x > 0 \text{ and } 2 + \ln x > 0
\\
\\
& \ln x < -2
\\
\\
& e^{\ln x} < e^{-2}
\\
\\
& x < e^{-2}
\\
\\
& x < \frac{1}{e^2}

\end{aligned}
\end{equation}
$



Therefore, the domain of $f(x) = \ln (2 + \ln x)$ is $\displaystyle \left(0, \frac{1}{e^2} \right)$

b.) Solving for the inverse function


$
\begin{equation}
\begin{aligned}

& y = \ln (2 + \ln x)
\\
\\
& e^y = e^{\ln (2 + \ln x)}
\\
\\
& e^y 2 + \ln x
\\
\\
& \ln x = e^y - 2
\\
\\
& e^{\ln x} = e^{e^y} - e^2
\\
\\
& x = e^{e^y} - e^2
\\
\\
& \text{Interchange } x \text{ and } y
\\
\\
& y = e^{e^x} - e^2
\\
\\
& y = e^{e^x - 2}
\\
\\
& f^{-1} (x) = e^{e^x - 2}

\end{aligned}
\end{equation}
$



The domain of $f^{-1} (x) = e^{e^x - 2}$ is $(- \infty, \infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...