Monday, June 16, 2014

Single Variable Calculus, Chapter 1, 1.1, Section 1.1, Problem 24

Evaluate the difference quotient $\displaystyle \frac{f(a + h) - f(a)}{h}$ for the function $f(x) = x^3$


$
\begin{equation}
\begin{aligned}

\frac{f(a + h) - f(a)}{h} &= \frac{(a + h)^3 - a^3}{h}
&&( \text{Substitute} f(a+h) \text{ and } f(a) \text{ to the function} f(x),
\text{ then divide it by } h)\\
\\


&= \frac{a^3 + 3a^2h + 3ah^2 + h^3 -a^3}{h}
&&(\text{ Combine like terms})\\
\\

&= \frac{3a^2h + 3ah^2 + h^3}{h}
&&(\text{ Factor the numerator}) \\
\\

&= \frac{\cancel{h}(h^2 + 3a^2 + 3ah)}{\cancel{h}}
&& (\text{ Cancel out like terms})\\
\\
& = 3a^2 + h^2 + 3ah

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...