Thursday, June 19, 2014

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 24

Determine the $\displaystyle \lim_{x \to 0} \frac{x - \sin x}{x - \tan x}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

$\displaystyle \lim_{x \to 0} \frac{x - \sin x}{x - \tan x} = \frac{0- \sin 0}{0 - \tan 0} = \frac{0}{0} \text{ Indeterminate form}$
Thus, by applying L'Hospital's Rule...
$\displaystyle \lim_{x \to 0} \frac{x - \sin x}{x - \tan x} = \lim_{x \ to 0} \frac{1 - \cos x}{1 - \sec^2 x}$

We will still get indeterminate form by evaluating the limit. So we will apply L'Hospital's Rule once more,

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{1- \cos x}{1 - \sec^2 x} &= \lim_{x \to 0} \frac{0-(-\sin x)}{0 - 2 \sec x (\sec \tan x)}\\
\\
&= \lim_{x \to 0} \frac{\sin x}{-2 \sec^2 x \tan x}\\
\\
&= \lim_{x \to 0} \frac{\sin x}{-2 \left( \frac{1}{\cos^2 x} \right) \left( \frac{\sin x}{\cos x} \right)}\\
\\
&= \lim_{x \to 0} - \frac{\cos^3 x}{2}\\
\\
&= - \frac{-\cos^3 (0)}{2} = - \frac{(1)^3}{2} = - \frac{1}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...