Monday, June 2, 2014

Single Variable Calculus, Chapter 1, Review Exercises, Section Review Exercises, Problem 19

Suppose that $f(x) = \sqrt{x}$ and $g(x) = \sin x $. Find the functions a) $f \circ g$, $\quad$ b) $g \circ f$, $\quad$ c) $f \circ f$ $\quad$ d) $g \circ g$ and their domains.


$
\begin{equation}
\begin{aligned}

f(x) =& \sqrt{x} \qquad \quad g(x) = \sin x\\
a) f \circ g =& f(g(x))\\
f(\sin x) =& \sqrt{x} \\
f \circ g =& \sqrt{\sin x} \\

\end{aligned}
\end{equation}
$







The square root function is defined only for non negative values of $x$, as we refer to the graph of $\sin x$, the values where the funcvtion is defined is from $0 \leq x \leq \pi$ and $2\pi$ which equals to 0.

Therefore, the domain of the function is $[2n\pi, \pi + 2n\pi]$ for its multiple cycles where $n$ is an integer.



$
\begin{equation}
\begin{aligned}
\text{ b)} g \circ f =& g(f(x))\\
g(\sqrt{x}) =& \sin x \\
g \circ f =& \sin (\sqrt{x})

\end{aligned}
\end{equation}
$


domain: $[0, \infty]$




$
\begin{equation}
\begin{aligned}
\text{ c)} f \circ f =& f(f(x)) \\
f(\sqrt{x}) =& \sqrt{x}\\
f(\sqrt{x}) =& \sqrt{\sqrt{x}} \\
f \circ f =& \sqrt[4]{x}

\end{aligned}
\end{equation}
$


domain: $[0, \infty]$

$
\begin{equation}
\begin{aligned}


\text{ d)} g \circ g =& g(g(x))\\
g(\sin x ) =& \sin x \\
g \circ g =& \sin (\sin x)


\end{aligned}
\end{equation}
$


domain: $(-\infty, \infty)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...