Wednesday, June 4, 2014

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 44

Find all real solutions of $\displaystyle x^2 - 4x + 1 = 0$.


$
\begin{equation}
\begin{aligned}

x^2 - 4x + 1 =& 0
&& \text{Given}
\\
\\
x^2 - 4x =& -1
&& \text{Subtract 1}
\\
\\
x^2 - 4x + 4 =& -1 + 4
&& \text{Complete the square: add } \left( \frac{-4}{2} \right)^2 = 4
\\
\\
(x - 2)^2 =& 3
&& \text{Perfect square}
\\
\\
x - 2 =& \pm \sqrt{3}
&& \text{Take the square root}
\\
\\
x =& 2 \pm \sqrt{3}
&& \text{Add 2}
\\
\\
x =& 2 + \sqrt{3} \text{ and } x = 2 - \sqrt{3}
&& \text{Solve for } x
\\
\\
y =& \frac{1 + \sqrt{5}}{4} \text{ and } y = \frac{1 - \sqrt{5}}{4}
&& \text{Simplify}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...