Wednesday, June 11, 2014

Calculus of a Single Variable, Chapter 9, 9.3, Section 9.3, Problem 81

The Integral test is applicable if f is positive and a decreasing function on infinite interval [k, oo) where kgt= 1 and a_n=f(x) . Then the series sum_(n=k)^oo a_n converges if and only if the improper integral int_k^oo f(x) dx converges. If the integral diverges then the series also diverges.
For the given series sum_(n=2)^oo 1/(n(ln(n))^3) , then a_n =1/(n(ln(n))^3) .
Then applying a_n=f(x) , we consider:f(x) =1/(x(ln(x))^3) .
The graph of f(x) is:

As shown on the graph above, the function f(x) is positive and decreasing on the finite interval [2,oo) . This implies we may apply the Integral test to confirm the convergence or divergence of the given series.
We may determine the convergence or divergence of the improper integral as:
int_2^oo 1/(x(ln(x))^3)= lim_(t-gtoo)int_2^t 1/(x(ln(x))^3)dx
To determine the indefinite integral of int_2^t 1/(x(ln(x))^3)dx , we may apply u-substitution by letting:
u = ln(x) and du = 1/x dx .
The integral becomes:
int 1/(x(ln(x))^3)dx=int 1/(ln(x))^3 *1/x dx
=int 1/u^3 du
Apply Law of exponent: 1/x^m = x^(-m) .
int 1/u^3 du=int u^(-3) du
Apply Power rule for integration: int x^n dx = x^(n+1)/(n+1) .
int u^(-3) du =u^(-3+1)/(-3+1)
=u^(-2)/(-2)
= - 1/(2u^2)
Plug-in u=ln(x) on - 1/(2u^2) , we get:
int_2^t 1/(x(ln(x))^3)dx=- 1/(2(ln(x))^2)|_2^t
Apply definite integral formula: F(x)|_a^b = F(b)-F(a) .
- 1/(2(ln(x))^2)|_2^t=- 1/(2(ln(t))^2)-(- 1/(2(ln(2))^2))
=- 1/(2(ln(t))^2)+ 1/(2(ln(2))^2)
Applying int_1^t 1/(x(ln(x))^3)dx=- 1/(2(ln(t))^2)+ 1/(2(ln(2))^2) , we get:
lim_(t-gtoo)int_1^t 1/(x(ln(x))^3)dx=lim_(t-gtoo)[- 1/(2(ln(t))^2)+ 1/(2(ln(2))^2)]
= 0+1/(2(ln(2))^2)
=1/(2(ln(2))^2)
Note: lim_(t-gtoo)1/(2(ln(2))^2)=1/(2(ln(2))^2) and
lim_(t-gtoo)- 1/(2(ln(t))^2)= [lim_(t-gtoo) 1]/[lim_(t-gtoo)2(ln(t))^2]
=-1/oo
=-0 or 0
Thelim_(t-gtoo)int_2^t 1/(x(ln(x))^3)dx= 1/(2(ln(2))^2) implies that the integral converges.
Conclusion: The integral int_2^oo 1/(x(ln(x))^3) is convergent therefore the series sum_(n=2)^oo 1/(n(ln(n))^3) must also be convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...