Friday, May 9, 2014

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 34

State whether the system of linear equations $\left\{ \begin{equation}
\begin{aligned}

-2x + 6y - 2z =& -12
\\
x - 3y + 2z =& 10
\\
-x + 3y + 2z =& 6

\end{aligned}
\end{equation} \right.$ is inconsistent or dependent. If it is dependent, find the complete solution.

We can write the system into simplest form


$
\left\{
\begin{equation}
\begin{aligned}

-x + 3y - z =& -6
\\
x - 3y + 2z =& 10
\\
-x + 3y + 2z =& 6

\end{aligned}
\end{equation}
\right.
$


We transform the system into row-echelon form.

$\left[ \begin{array}{cccc}
-1 & 3 & -1 & -6 \\
1 & -3 & 2 & 10 \\
-1 & 3 & 2 & 6
\end{array} \right]$

$-R_1$

$\left[ \begin{array}{cccc}
1 & -3 & 1 & 6 \\
1 & -3 & 2 & 10 \\
-1 & 3 & 2 & 6
\end{array} \right]$

$R_3 + R_1 \to R_3$

$\left[ \begin{array}{cccc}
1 & -3 & 1 & 6 \\
1 & -3 & 2 & 10 \\
0 & 0 & 3 & 12
\end{array} \right]$

$\displaystyle \frac{1}{3} R_3$

$\left[ \begin{array}{cccc}
1 & -3 & 1 & 6 \\
1 & -3 & 2 & 10 \\
0 & 0 & 1 & 4
\end{array} \right]$


$R_2 - R_1 \to R_2$

$\left[ \begin{array}{cccc}
1 & -3 & 1 & 6 \\
0 & 0 & 1 & 4 \\
0 & 0 & 1 & 4
\end{array} \right]$


The matrix has infinitely many solutions to obtain the complete solution, we let $t$ represent any real number, we expresses $x$ and $y$ in terms of $t$.


$
\begin{equation}
\begin{aligned}

x =& 3t + 6 - z
\\
=& 3t + 6 - 4
\\
=& 3t + 2
\\
y =& t
\\
z =& 4

\end{aligned}
\end{equation}
$


We can also write the solution as the ordered triple $(3t + 2, t, 4)$, where $t$ is any real number.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...