Thursday, May 15, 2014

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 52

Evaluate $\displaystyle (\sqrt{3} - \sqrt{-4})(\sqrt{6} - \sqrt{-8})$ and express the result in the form $a + bi$.


$
\begin{equation}
\begin{aligned}

=& (\sqrt{3} - \sqrt{-4})(\sqrt{6} - \sqrt{-8})
&& \text{Given}
\\
\\
=& \sqrt{3\cdot6} - \sqrt{3(-8)} - \sqrt{6(-4)} + \sqrt{(-8)(-4)}
&& \text{Use FOIL method}
\\
\\
=& \sqrt{18} - \sqrt{-24} - \sqrt{-24} + \sqrt{32}
&& \text{Simplify}
\\
\\
=& \sqrt{18} - 2 \sqrt{-24} + \sqrt{32}
&& \text{Recall that } i^2 = -1
\\
\\
=& \sqrt{18} - 2 \sqrt{24i^2} + \sqrt{32}
&&
\\
\\
=& \sqrt{18} - 2 \sqrt{24} i + \sqrt{32}
&& \text{Group terms}
\\
\\
=& (\sqrt{18} + \sqrt{32}) - 2 \sqrt{24} i
&& \text{Simplify}
\\
\\
=& 7 \sqrt{2} - 4 \sqrt{6} i
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...