Monday, May 26, 2014

College Algebra, Chapter 8, Review Exercises, Section Review Exercises, Problem 38

Identify the type of curve which is represented by the equation $\displaystyle 2x^2 + 4 = 4x + y^2 $
Find the foci and vertices(if any), and sketch the graph

$
\begin{equation}
\begin{aligned}
y^2 - 2(x^2 -2x) &= 4 && \text{Factor and group terms}\\
\\
y^2 - 2(x^2-2x+1) &= 4 -2 && \text{Complete the square; Add } \left( \frac{-2}{2} \right)^2 =1 \text{ on the left and subtract 2 from the right}\\
\\
y^2 - 2(x - 1)^2 &= 2 && \text{Perfect square}\\
\\
\frac{y^2}{2} - (x - 1)^2 &= 1 && \text{Divide by 2}
\end{aligned}
\end{equation}
$


The equation is hyperbola that has the form $\displaystyle \frac{(y - k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ with center at $(h,k)$ and vertical transverse axis.
The graph of the shifted hyperbola is obtained from the graph of $\displaystyle \frac{y^2}{2} - x^2 = 1$ by shifting it 1 unit to the right. This gives us a
$a^2 = 2$ and $b^2 = 1$, so $a = \sqrt{2}, b = 1$ and $c = \sqrt{a^2 + b^2} = \sqrt{2+1} = \sqrt{3}$. Then, by applying transformation

$
\begin{equation}
\begin{aligned}
\text{center } & (h,k) && \rightarrow && (1,0)\\
\\
\text{vertices } & (0,a)&& \rightarrow && (0,\sqrt{2}) && \rightarrow && (0+1,\sqrt{2}) && = && (1, \sqrt{2})\\
\\
& (0,-a)&& \rightarrow && (0,-\sqrt{2}) && \rightarrow && (0+1,-\sqrt{2}) && = && (1,-\sqrt{2})\\
\\
\text{foci } & (0,c)&& \rightarrow && (0,\sqrt{3}) && \rightarrow && (0+1,\sqrt{3}) && = && (1,\sqrt{3})\\
\\
& (0,-c)&& \rightarrow && (0,-\sqrt{3}) && \rightarrow && (0+1,-\sqrt{3}) && = && (1,-\sqrt{3})
\end{aligned}
\end{equation}
$

Then, the graph is

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...