Tuesday, May 27, 2014

int (sec(2x) + tan(2x)) dx Find the indefinite integral.

int(sec(2x)+tan(2x))dx=
Use additivity of integral: int (f(x)+g(x))dx=int f(x)dx+int g(x)dx. int sec(2x)dx+int tan(2x)dx=
Make the same substitution for both integrals: u=2x, du=2dx=>dx=(du)/2
1/2int sec u du+1/2int tan u du=
Now we have table integrals.
1/2ln|sec u+tan u|-1/2ln|cos u|+C
Return the substitution to obtain the final result.
1/2ln|sec(2x)+tan(2x)|-1/2ln|cos(2x)|+C 
http://integral-table.com/

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...