Wednesday, May 28, 2014

Calculus: Early Transcendentals, Chapter 3, 3.6, Section 3.6, Problem 40

y=(e^-x*(cos(x))^2)/(x^2+x+1)

Taking the natural logarithm of both sides and applying the properties of logarithms, we get

logy=loge^-x+2logcosx -log(x^2+x+1)
logy=-x+2logcosx-log(x^2+x+1)

Differentiating both sides with respect to x, we get

1/y dy/(dx)=-1+(2/cosx)(-sinx) -(1/(x^2+x+1))(2x+1)
1/y dy/(dx)=-1-2tanx-(2x+1)/(x^2+x+1)
dy/dx=y(-1-2tanx-(2x+1)/(x^2+x+1))
dy/dx=((e^-x(cos(x)))^2/(x^2+x+1))(-1-2tanx-(2x+1)/(x^2+x+1))
dy/dx=-((e^-x(cos(x))^2)/(x^2+x+1))(((x^2+x+1+2(x^2+x+1)(tanx)+2x+1))/(x^2+x+1))
dy/dx=-((e^-x(cos(x))^2)(x^2+3x+2+2(x^2+x+1)tanx))/(x^2+x+1)^2

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...