Tuesday, May 20, 2014

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 36

Find the integrals $\displaystyle \int^{\pi/3}_0 \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta$

$
\begin{equation}
\begin{aligned}
\int \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= \int \frac{\sin \theta (1 + \tan^2 \theta)}{\sec^2 \theta} d \theta && \text{Apply Pythagorean Identities } \left(1 + \tan^2 \theta = \sec^2 \theta\right) \\
\\
\int \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= \int \frac{\sin \theta \cancel{\sec^2 \theta} }{\cancel{\sec^2 \theta}} d \theta\\
\\
\int \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= \sin \theta d \theta\\
\\
\int \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= - \cos \theta + C\\
\\
\int^{\pi/3}_0 \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= - \cos \left( \frac{\pi}{3} \right) + C \left[ - \cos (0) + C \right]\\
\\
\int^{\pi/3}_0 \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= - \frac{1}{2} + C + 1 - C\\
\\
\int^{\pi/3}_0 \frac{\sin \theta + \sin \theta \tan^2\theta}{\sec^2 \theta} d \theta &= \frac{1}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...