Wednesday, April 2, 2014

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 31

a.) Differentiate the given function using the Quotient Rule

$\displaystyle f(x) = \frac{\tan x - 1}{\sec x}$

Solving for $f'(x)$

$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{\sec x \displaystyle \frac{d}{dx} (\tan x - 1) - \left[ (\tan x - 1) \frac{d}{dx} (\sec x) \right]}{(\sec x)^2}
&&
\\
\\
f'(x) =& \frac{(\sec x)(\sec^2 x) - [(\tan x - 1) (\sec x \tan x)]}{\sec ^2 x}
&& \text{Simplify the equation}
\\
\\
f'(x) =& \frac{\sec ^3 x - \sec x \tan ^2 x + \sec x \tan x}{\sec ^2 x }
&& \text{Factor out $\sec x$}
\\
\\
f'(x) =& \frac{\cancel{\sec x} (\sec ^2 x - \tan^2 x + \tan x)}{\sec^{\cancel{2}} x}
&& \text{Applying Pythagorean identity $\sec^2 x - \tan^2 x = 1$}
\\
\\
f'(x) =& \frac{1 \tan x}{\sec x}

\end{aligned}
\end{equation}
$


b.) Write the expression for $f(x)$ in terms of $\sin x + \cos x$ and simplify it then find $f'(x)$


$
\begin{equation}
\begin{aligned}

f(x) =& \frac{\tan x - 1}{\sec x}
&& \text{Applying the reciprocal identities}
\\
\\
f(x) =& \left( \frac{\sin x}{\cos x} - 1 \right) (\cos x)
&& \text{Simplify the equation}
\\
\\
f(x) =& \left( \frac{\sin x - \cos x}{\cancel{\cos x}} \right) (\cancel{\cos} x)
&& \text{Cancel like terms}
\\
\\
f(x) =& \sin x \cos x
&& \text{Simplified expression of $f(x)$}
\\
\\


\end{aligned}
\end{equation}
$


Solving for $f'(x)$


$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{d}{dx} (\sin x) - \frac{d}{dx} (\cos x)
&& \text{Derive directly}
\\
\\
f'(x) =& \cos x - (- \sin x)
&& \text{Simplify the equation}
\\
\\
f'(x) =& \cos x + \sin x
&& \text{}
\\
\\


\end{aligned}
\end{equation}
$



c.) Prove that the answers to part (a) and (b) are equivalent.

We can express the answer in part (a) in terms of $\sin x$ and $\cos x$. We get


$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{1 + \tan x}{\sec x}
&& \text{Group the equation}
\\
\\
f'(x) =& \frac{1}{\sec x} + \frac{\tan x}{\sec x}
&& \text{Apply the reciprocal identity}
\\
\\
f'(x) =& \cos x + \left( \frac{\sin x}{\cancel{\cos x}} \right) (\cancel{\cos x})
&& \text{Simplify the equation}
\\
\\
f'(x) =& \cos x + \sin x
&&

\end{aligned}
\end{equation}
$


The simplified expression in part (a) is equal to the answer in part (b)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...