Monday, April 28, 2014

e^(2x) = sinh(2x) + cosh(2x) Verify the identity.

e^(2x)=sinh(2x)+cosh(2x)
Take note that hyperbolic sine and hyperbolic cosine are defined as

sinh(u) = (e^u-e^(-u))/2

cosh(u)=(e^u+e^(-u))/2
Apply these two formulas to express the right side in exponential form.
e^(2x)=(e^(2x)-e^(-2x))/2 + (e^(2x)+e^(-2x))/2
Adding the two fractions, the right side simplifies to
e^(2x) = (2e^(2x))/2
e^(2x)=e^(2x)
This proves that the given equation is an identity.
 
Therefore,  e^(2x)=sinh(2x)+cosh(2x)  is an identity.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...