Monday, April 14, 2014

Single Variable Calculus, Chapter 2, 2.5, Section 2.5, Problem 42

Determine the values of the constants $a$ and $b$ that make the function $\displaystyle f(x) = \left\{ \begin{array}{cc}
\frac{x^2 - 4}{x - 2} & \text{ if } & x < 2 \\
ax^2 - bx + 3 & \text{ if } & 2 < x < 3 \\
2x - a + b & \text{ if } & x \geq 3
\end{array} \right. \quad $ continuous everywhere.

Based from the definition of continuity,
The function is continuous of at a number if and only if the left and right hand limits of the function at the same number is equal. So,


For $x = 2$


$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to 2^-} \frac{x^2 - 4}{x - 2} &= \lim \limits_{x \to 2^+} ax^2 - bx +3\\
\lim \limits_{x \to 2^-}
\frac{(x + 2) \cancel{(x- 2)}}{\cancel {(x - 2)}} &= \lim \limits_{x \to 2^+} ax^2 - bx +3\\
\lim \limits_{x \to 2^-} (x+2) &= \lim \limits_{x \to 2^+} ax^2 - bx +3\\
2+2 &= a(2)^2 - b(2) + 3\\
4 &= 4a - 2b + 3\\
4 - 3 &= 4a - 2b\\
4a - 2b &= 1 && \Longleftarrow \text{ (Equation 1) }

\end{aligned}
\end{equation}
$


For $x=3$


$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to 3^-} ax^2 - bx + 3
& = \lim \limits_{x \to 3^+} 2x - a +b\\
a(3)^2 - b(3) + 3
& = 2(3) - a + b\\
9a - 3b + 3
& = 6 - a + b\\
10a - 4b
& = 3 && \Longleftarrow \text{(Equation 2)}\\
\end{aligned}
\end{equation}
$


Using Equations 1 and 2 to solve for the values of $a$ and $b$ simultaneously.

$
\displaystyle
a = \frac{1}{2}\\
\displaystyle
b = \frac{1}{2}
$


Therefore,
The values of $a$ and $b$ that will make the given function continuous everywhere are $ \displaystyle \frac{1}{2}$ and $ \displaystyle \frac{1}{2}$ respectively.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...