Tuesday, April 15, 2014

College Algebra, Exercise P, Exercise P.4, Section Exercise P.4, Problem 68

Simplify the expression $\displaystyle \left( \frac{x^2y}{2y^3} \right)^{-2}$ and eliminate any negative exponents.

$
\begin{equation}
\begin{aligned}
\left( \frac{x^2y}{2y^3} \right)^{-2} &= \left( \frac{2y^3}{x^2y} \right)^2 && \text{Law: } \left( \frac{a}{b} \right)^{-n} = \left( \frac{b}{a} \right)^n\\
\\
&= \frac{2^2(y^3)^2}{(x^2)^2(y)^2} && \text{Law: } (ab)^n = a^n b^n\\
\\
&= \frac{4y^6}{x^4y^2} && \text{Law: } (a^m)^n = a^{mn}\\
\\
&= \frac{4y^{6-2}}{x^4} && \text{Law: } \frac{a^m }{a^n} = a^{m-n}\\
\\
&= \frac{4y^4}{x^4}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...