Sunday, April 27, 2014

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 38

Evaluate $\displaystyle \int \sin (\ln x) dx$ by making a substitution first, then by using Integration by parts.
If we use $z = \ln x$, then $e^z = x$ so $dx = e^z dz$
Thus,


$\displaystyle \int \sin (\ln x) dx = \int \sin z \left( e^z dz \right) = \int e^z \sin z dz$
By using Integration by parts, if we let $u = e^z$ and $dv = \sin z dz$ then,
$du = e^z dz$ and $v = -\cos z$

Thus,

$
\begin{equation}
\begin{aligned}
\int e^z \sin z dz = uv - \int vdu &= -e^z \cos z - \int (-\cos z) (e^z dz)\\
\\
&= -e^z \cos z + \int e^z \cos z dz
\end{aligned}
\end{equation}
$

Again by using Integration by parts, if we let

$
\begin{equation}
\begin{aligned}
u_1 &= e^z && \text{and}& dv_1 &= \cos z dz \text{, then}\\
\\
du_1 &= e^z dz && \text{and}& v_1 &= \sin z
\end{aligned}
\end{equation}
$

So,
$\displaystyle \int e^z \cos z dz = u_1 v_1 - \int v_1 du, = e^z \sin z - \int \sin z(e^z dz)$

Going back to the first equation,
$\displaystyle \int e^z \sin z dz = -e^z \cos z + \left[e^z\sin z - \int \sin z \left( e^z dz \right) \right]$

Combining like terms, we obtain

$
\begin{equation}
\begin{aligned}
2 \int e^z \sin z dz &= -e^z \cos z + e^z \sin z\\
\\
\int e^z \sin z dz &= \frac{e^z(\sin z - \cos z)}{2}

\end{aligned}
\end{equation}
$

but $z = \ln x$,

Therefore,


$
\begin{equation}
\begin{aligned}
\frac{e^z(\sin z - \cos z)}{2} &= \frac{e^{\ln x} (\sin (\ln x) - \cos (\ln x))}{2}\\
\\
&= \frac{x}{2} [ \sin (\ln x) - \cos (\ln x)] + c
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...