Saturday, April 19, 2014

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 20

Show that $\displaystyle \frac{d}{dx} \left( \sec^{-1} x \right) = \frac{1}{x\sqrt{x^2 - 1}}$
If we let $y = \sec^{-1} x$, then
$\sec y = x$

By Implicit Differentiation,
$\displaystyle \frac{d}{dx} \sec y = \frac{d}{dx} (x)$

$\displaystyle \sec y \tan y \left( \frac{dy}{dx} \right) = 1$
$\displaystyle \frac{dy}{dx} = \frac{1}{\sec y \tan y}$

By applying Pythagorean Identity,

$
\begin{equation}
\begin{aligned}
1 + \tan^y &= \sec^2 y\\
\\
\tan y &= \sqrt{\sec^2 y - 1}
\end{aligned}
\end{equation}
$


Thus,
$\displaystyle \frac{dy}{dx} = \frac{1}{\sec y \sqrt{\sec^2 y - 1}}$

But $\sec y = x$, therefore,
$\displaystyle \frac{dy}{dx} = \frac{1}{x \sqrt{x^2 - 1}}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...