Saturday, April 19, 2014

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 20

Show that ddx(sec1x)=1xx21
If we let y=sec1x, then
secy=x

By Implicit Differentiation,
ddxsecy=ddx(x)

secytany(dydx)=1
dydx=1secytany

By applying Pythagorean Identity,

1+tany=sec2ytany=sec2y1


Thus,
dydx=1secysec2y1

But secy=x, therefore,
dydx=1xx21

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...