Saturday, February 1, 2014

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 58

Find the 1st and 2nd derivatives of $G(r) = \sqrt{r} + \sqrt[3]{r}$


$
\begin{equation}
\begin{aligned}

G'(r) =& \frac{d}{dr} (r^{\frac{1}{2}}) + \frac{d}{dr} (r^{\frac{1}{3}})
&& \text{Derive each term}
\\
\\
G'(r) =& \frac{(r)^{\frac{-1}{2}}}{2} + \frac{(r)^{\frac{-2}{3}}}{3}
&& \text{Simplify the equation}
\\
\\
G'(r) =& \frac{1}{2 \sqrt{r}} + \frac{1}{3 \sqrt[3]{r^2}}
&& \text{1st derivative of $G(r)$}
\\
\\
\\
\\
G''(r) =& \frac{(2)(r)^{\frac{1}{2}} \displaystyle \frac{d}{dr} (1) - \left[ (1)(2) \frac{d}{dr} (r)^{\frac{1}{2}} \right] }{(2 \sqrt{r})^2} +
\frac{\displaystyle 3 (r^{\frac{2}{3}}) \frac{d}{dr} (1) - \left[ (1)(3) \frac{d}{dr} (r^{\frac{2}{3}}) \right]}{(3 \sqrt[3]{r^2})^2}
&& \text{Using Quotient Rule}
\\
\\
G''(r) =& \frac{\displaystyle (2)(r^{\frac{1}{2}}) (0) - (1)(2)\left( \frac{1}{2} r^{\frac{-1}{2}} \right) }{4r} +
\frac{\displaystyle (3)(r^{\frac{2}{3}}) (0) - (1)(3) \left( \frac{2}{3} r^{\frac{-1}{3}} \right)}{9 \sqrt[3]{r^4}}
&& \text{Simplify the equation}
\\
\\
G''(r) =& \frac{r^{\frac{-1}{2}}}{4r} - \frac{2r^{\frac{-1}{3}}}{9 \sqrt[3]{r^4}}
&& \text{Simplify the equation}
\\
\\
G''(r) =& \frac{1}{4r \sqrt{r}} - \frac{2}{9 r \sqrt[3]{r^2}}
&& \text{2nd derivative of $G(r)$}
\\
\\

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...