Tuesday, February 4, 2014

College Algebra, Chapter 9, Review Exercises, Section Review Exercises, Problem 80

Determine the first three terms in the expression of $\displaystyle \left( b^{\frac{-2}{3}} + b^{\frac{1}{3}} \right)^{20}$
The $n$th term of the binomial expansion $(a+b)^n$ is defined as
$\displaystyle
\left(
\begin{array}{c}
n \\
r -1
\end{array}
\right)
(a)^{n-r+1} (b)^{r-1}
\qquad
\text{or}
\qquad
nC_{r-1} = (a)^{n-r+1} (b)^{r-1}$

If we rewrite the expression as $\displaystyle \left( b^{\frac{1}{3}} + b^{\frac{-2}{3}} \right)^{20}$ we have, $n = 20$, $a = b^{\frac{1}{3}}$ and $b = b^{\frac{-2}{3}}$. So the first term is


$
\begin{equation}
\begin{aligned}

&=
\left(
\begin{array}{c}
20 \\
1-1
\end{array}
\right)

\left(
b^{\frac{1}{3}}
\right)^{20 - 1 +1}

\left(
b^{\frac{-2}{3}}
\right)^{1-1}
\\
\\

&=
\left(
\begin{array}{c}
20 \\
0
\end{array}
\right)

\left(
b^{\frac{1}{3}}
\right)^{20}

\left(
b^{\frac{-2}{3}}
\right)^{0}
\\
\\
&=
b^{\frac{20}{3}}

\end{aligned}
\end{equation}
$


The second term is

$
\begin{equation}
\begin{aligned}

&=
\left(
\begin{array}{c}
20 \\
2-1
\end{array}
\right)

\left(
b^{\frac{1}{3}}
\right)^{20 - 2 +1}

\left(
b^{\frac{-2}{3}}
\right)^{2-1}
\\
\\

&=
\left(
\begin{array}{c}
20 \\
1
\end{array}
\right)

\left(
b^{\frac{1}{3}}
\right)^{19}

\left(
b^{\frac{-2}{3}}
\right)
\\
\\
&=
\left(
\begin{array}{c}
20 \\
1
\end{array}
\right)

\left(
b^{\frac{19}{3}}
\right)

\left(
b^{\frac{-2}{3}}
\right)
\\
\\
&=
\left(
\begin{array}{c}
20 \\
1
\end{array}
\right)

(b)^{\frac{19}{3} - \frac{2}{3}}
\\
\\
&= 20b^{\frac{17}{3}}
\end{aligned}
\end{equation}
$


Then, the third term is

$
\begin{equation}
\begin{aligned}

&=
\left(
\begin{array}{c}
20 \\
3-1
\end{array}
\right)

\left(
b^{\frac{1}{3}}
\right)^{20 - 3 +1}

\left(
b^{\frac{-2}{3}}
\right)^{3-1}
\\
\\

&=
\left(
\begin{array}{c}
20 \\
2
\end{array}
\right)

\left(
b^{\frac{1}{3}}
\right)^{18}

\left(
b^{\frac{-2}{3}}
\right)^{2}
\\
\\

&=
\left(
\begin{array}{c}
20 \\
2
\end{array}
\right)

\left(
b^{\frac{18}{3}}
\right)
\left(
b^{\frac{-4}{3}}
\right)
\\
\\

&=
\left(
\begin{array}{c}
20 \\
2
\end{array}
\right)

\left(
b^{\frac{18}{3}- \frac{4}{3}}
\right)
\\
\\
&= 190b^{\frac{14}{3}}

\end{aligned}
\end{equation}
$

Therefore, the first three terms are,
$b^{\frac{20}{3}} + 20b^{\frac{17}{3}}$ and $190b^{\frac{14}{3}}$ respectively.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...