Monday, December 9, 2019

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 30

Find the functions $f+g$, $f-g$, $f \cdot g$, and $f/g$ and their domains

$f(x) = \sqrt{3-x} , \qquad g(x) \sqrt{x^2-1}$



$
\begin{equation}
\begin{aligned}

@ f+g\\
f+g =& f(x)+g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}\\

\end{aligned}
\end{equation}
$


$\boxed{f+g = \sqrt{3-x}+\sqrt{x^2-1}}$

$\boxed{ \text{The domain of this function is} (-\infty,3]}$


$
\begin{equation}
\begin{aligned}

@f-g\\
f-g =& f(x)-g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}

\end{aligned}
\end{equation}
$



$\boxed{f-g = \sqrt{3-x} - \sqrt{x^2-1}}$

$\boxed{ \text{ The domain of this function is} (-\infty,3]}$



$
\begin{equation}
\begin{aligned}

@f \cdot g\\
f \cdot g =& f(x) \cdot g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}\\
f \cdot g =& (3-x)^{\frac{1}{2}} (x^2-1)^{\frac{1}{2}} && \text{ Using FOIL method}\\
f \cdot g =& (3x^2-3-x^3+x)^{\frac{1}{2}}

\end{aligned}
\end{equation}
$




$\boxed{ f \cdot g = (3x^2-x^3+x-3)^{\frac{1}{2}}   or \sqrt{-x^3+3x^2+x-3}}$

By factoring $\sqrt{-x^3+3x^2+x-3}$, we get $\sqrt{(3-x)(x+1)(x-1)}$

We must ensure that the radicand is not less than 0.

Therefore, The domain of the function is $(-\infty,-1) \bigcup (1,3)$


$
\begin{equation}
\begin{aligned}
@\frac{f}{g}\\
\frac{f}{g} =& \frac{f(x)}{g(x)}
&& \text{ Substitute the given values of the function $f(x)$ and $g(x)$}

\end{aligned}
\end{equation}
$



$\boxed{\displaystyle \frac{f}{g} = \frac{\sqrt{3-x}}{\sqrt{x^2-1}} \text{ or } \frac{\sqrt{3 - x}}{\sqrt{(x + 1)(x - 1)}}}$

We must ensure that the radicand is not less than 0.

Therefore, The domain of the function is $(-\infty,-1) \bigcup (1,3)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...