Tuesday, December 24, 2019

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 18

a.) By using Pythagorean Theorem, we have...
$x^2 + 90^2 = z^2$; when $x = 45$ft; $z = \sqrt{45^2 + 90^2} = 45 \sqrt{5}$ft


Taking the derivative with respect to time,
$\displaystyle 2x \frac{dx}{dt} + 0 = 2z \frac{dz}{dt}$

$
\begin{equation}
\begin{aligned}
x \frac{dx}{dt} &= z \frac{dz}{dt}\\
\\
\frac{dz}{dt} &= \frac{x}{z} \frac{dx}{dt}
\end{aligned}
\end{equation}
$

Plugging in all the values we have,

$
\begin{equation}
\begin{aligned}
\frac{dz}{dt} &= \frac{\cancel{45}}{\cancel{45}\sqrt{5}} (24)\\
\\
\frac{dz}{dt} &= \frac{24}{\sqrt{5}} \text{ or } \frac{24\sqrt{5}}{5} \frac{\text{ft}}{s}
\end{aligned}
\end{equation}
$


The distance of the battler from the second base is decreasing at a rate of $\displaystyle\frac{24\sqrt{5}}{5}\frac{\text{ft}}{s}$
b.)



Again, by using Pythagorean Theorem,
$x^2 + 90^2 = z^2$; when $x = 45$ft; $z = \sqrt{45^2 + 90^2} = 45 \sqrt{5}$ft
Taking the derivative with respect to time,

$
\begin{equation}
\begin{aligned}
0 + 2x \frac{dx}{dt} &= 2z \frac{dz}{dt}\\
\\
x \frac{dx}{dt} & = z \frac{dz}{dt}\\
\\
\frac{dz}{dt} & = \frac{x}{z} \frac{dx}{dt}
\end{aligned}
\end{equation}
$


Plugging all the values we obtain,


$
\begin{equation}
\begin{aligned}
\frac{dz}{dt} &= \frac{45}{45\sqrt{5}} (24)\\
\\
\frac{dz}{dt} &= \frac{24}{\sqrt{5}} \text{ or } \frac{24\sqrt{5}}{5} \frac{\text{ft}}{s}
\end{aligned}
\end{equation}
$

Thus shows that the distance of the batter from the third base is increasing at a rate equal to the decreasing rate of the batter's distance from the second base.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...