Sunday, December 22, 2019

College Algebra, Chapter 4, 4.5, Section 4.5, Problem 8

a.) Find all zeros of $P(x) = x^3 + x^2 + x$ of $P$, real and complex

b.) Factor $P$ completely.



a.) We first factor $P$ as follows.


$
\begin{equation}
\begin{aligned}

P(x) =& x^3 + x^2 + x
&& \text{Given}
\\
\\
=& x (x^2 + x + 1)
&& \text{Factor out } x

\end{aligned}
\end{equation}
$


We find the zeros of $P$ by setting each factor equal to :

Setting $x = 0$, we see that $x = 0$ is a zero. More over, setting $x^2 + x + 1 = 0$, by using quadratic formula, we get


$
\begin{equation}
\begin{aligned}

x =& \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\\
\\
=& \frac{-1 \pm \sqrt{1^2 - 4(1)(1)}}{2 (1)}
\\
\\
=& \frac{-1 \pm \sqrt{-3}}{2}
\\
\\
=& \frac{-1 \pm \sqrt{3} i}{2}

\end{aligned}
\end{equation}
$


So the zeros of $P$ are $\displaystyle 0, \frac{-1 + \sqrt{3} i}{2}$ and $\displaystyle \frac{-1 - \sqrt{3} i}{2}$.

b.) By complete factorization,


$
\begin{equation}
\begin{aligned}

P(x) =& (x) \left[ x - \left( \frac{-1 + \sqrt{3} i}{2} \right) \right] \left[ x - \left( \frac{-1 - \sqrt{3} i}{2} \right) \right]
\\
\\
=& x \left[ x + \left( \frac{1 - \sqrt{3} i}{2} \right) \right] \left[ x + \left( \frac{1 + \sqrt{3} i}{2} \right) \right]

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...