Monday, December 30, 2019

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 34

Determine the first fifth terms in the expansion $(ab-1)^{20}$
Recall that the Binomial Theorem is defined as
Substituting $a = ab$ and $ b = -1 $ gives

$
(ab - 1)^{20} =
\left(
\begin{array}{c}
20\\
0
\end{array}
\right)
(ab)^{20} +
\left(
\begin{array}{c}
20\\
1
\end{array}
\right)
(ab)^{19} (-1) +
\left(
\begin{array}{c}
20\\
2
\end{array}
\right)
(ab)^{18} (-1)^2 +
\left(
\begin{array}{c}
20\\
3
\end{array}
\right)
(ab)^{17} (-1)^3 +
\left(
\begin{array}{c}
20\\
4
\end{array}
\right)
(ab)^{16} (-1)^4 +
....
$

Thus, the 5th term is

$
\begin{equation}
\begin{aligned}
&=
\left(
\begin{array}{c}
20\\
4
\end{array}
\right)
(ab)^{16}(-1)^4\\
\\
&=
\left( \frac{20!}{4!(20-4)!} \right) (ab)^{16}(-1)^4\\
\\
&= 4845 a^{16} b^{16}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...