Wednesday, December 18, 2019

int_0^1 cos(x^2) dx Use a power series to approximate the value of the integral with an error of less than 0.0001.

 From the table of power series, we have:
cos(x) = sum_(n=0)^oo (-1)^nx^(2n)/((2n))!
            = 1-x^2/(2!)+x^4/(4!)-x^6/(6!)+ ...
 To apply this on the given integral int_0^1 cos(x^2) dx , we may replace the "x " with "x^2 ".
cos(x^2) = sum_(n=0)^oo(-1)^n (x^2)^(2n)/((2n)!)                    
              =sum_(n=0)^oo (-1)^n x^(4n)/((2n)!)
              = 1-x^4/2+x^8/24-x^(12)/720+ x^16/40320 -...
The integral becomes:
int_0^1 cos(x^2) dx =int_0^1 [ 1-x^4/2+x^8/24-x^(12)/720+ x^16/40320-...]dx
To determine the indefinite integral, we integrate each term using Power Rule for integration: int x^ndx =x^(n+1)/(n+1) .
int_0^1 [ 1-x^4/2+x^8/24-x^(12)/720+ x^16/40320-...]dx
=x-x^5/(2*5)+x^9/(24*9)-x^(13)/(720*13)+ x^17/(40320*17)- ...
=x-x^5/10+x^9/216-x^(13)/9360+ x^17/685440- ...
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
F(1)=1-1^5/10+1^9/216-1^(13)/9360+ 1^17/685440- ...
      =1-1/10+1/216-1/9360+ 1/685440- ...
F(0) =0-0^5/10+0^9/216-0^(13)/9360+ 0^17/685440- ...
      = 0-0+0-0+0- ...
All the terms are 0 then F(0)= 0 .
We can stop at 5th term  (1/685440~~ 0.0000014589) since we only need an error less than 0.0001 .
Then,
F(1)-F(0)= [1-1/10+1/216-1/9360+ 1/685440-]-[0]
            = 0.9045242509
Thus, the approximated integral value is:
int_0^1 cos(x^2) dx ~~0.9045

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...