Sunday, December 22, 2019

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 53

int1/(2-3sin(theta))d theta
Apply integral substitution:u=tan(theta/2)
=>du=1/2sec^2(theta/2)d theta
Use the trigonometric identity:sec^2(x)=1+tan^2(x)
sec^2(theta/2)=1+tan^2(theta/2)
sec^2(theta/2)=1+u^2
du=1/2(1+u^2)d theta
d theta=2/(1+u^2)du
From integral substitution:u=tan(theta/2)
=>sin(theta/2)=u/sqrt(u^2+1)
cos(theta/2)=1/sqrt(u^2+1)
sin(theta)=2sin(theta/2)cos(theta/2)
sin(theta)=2(u/sqrt(u^2+1))(1/sqrt(u^2+1))
sin(theta)=(2u)/(u^2+1)
Now the integrand can be written as :
int1/(2-3sin(theta))d theta=int1/(2-3((2u)/(u^2+1)))(2/(1+u^2))du
=int1/((2(u^2+1)-3(2u))/(u^2+1))(2/(1+u^2))du
=int2/(2u^2+2-6u)du
=int2/(2(u^2-3u+1))du
=int1/(u^2-3u+1)du
Complete the square of the denominator,
=int1/((u-3/2)^2-5/4)du
Again apply integral substitution:v=u-3/2
=>dv=1du
=int1/(v^2-(sqrt(5)/2)^2)dv
=int1/(-1((sqrt(5)/2)^2-v^2))dv
Take the constant out,
=-1int1/((sqrt(5)/2)^2-v^2)dv
Now use the standard table integral:int1/(a^2-x^2)dx=1/(2a)ln|(a+x)/(a-x)|+C
=-1(1/(2(sqrt(5)/2))ln|(sqrt(5)/2+v)/(sqrt(5)/2-v)|)+C
=(-1/sqrt(5))ln|(sqrt(5)+2v)/(sqrt(5)-2v)|+C
Substitute back v=u-3/2
=(-1/sqrt(5))ln|(sqrt(5)+2(u-3/2))/(sqrt(5)-2(u-3/2))|+C
=(-1/sqrt(5))ln|(sqrt(5)+2u-6)/(sqrt(5)-2u+6)|+C
Substitute back u=tan(theta/2)
=(-1/sqrt(5))ln|(sqrt(5)+2tan(theta/2)-6)/(sqrt(5)-2tan(theta/2)+6)|+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...