Tuesday, December 24, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 65

Suppose that $f$ and $g$ are the functions whose graphs are shown, let $u(x) = f(g(x)), v(x) = g(f(x))$ and $w(x) = g(g(x))$. Find each derivative, if it exist, explain why.







a.) $u'(1)$


$
\begin{equation}
\begin{aligned}

u'(x) =& f'(g(x)) g'(x)
\\
\\
u'(1) =& f'(g(1)) g'(1)
\\
\\
u'(1) =& f'(3) g'(1)
\\
\\
u'(1) =& \left( \frac{3 - 4}{6 - 1} \right) \left( \frac{0 - 6}{2 - 0} \right)
\\
\\
u'(1) =& \left( \frac{-1}{4} \right) (-3)
\\
\\
u'(1) =& \frac{3}{4}

\end{aligned}
\end{equation}
$


b.) $v' (1)$


$
\begin{equation}
\begin{aligned}

& v'(x) = g'(f(x)) f'(x)
\\
\\
& v'(1) = g'(f(1)) f'(1)
\\
\\
& v'(1) = g'(2) f'(1)
\\
\\
& v'(1) \text{ does not exist because $g'(2)$ doesn't exist.}

\end{aligned}
\end{equation}
$



c.) $w' (1)$


$
\begin{equation}
\begin{aligned}

w'(x) =& g'(g(x)) g'(x)
\\
\\
w'(1) =& g'(g(1)) g'(1)
\\
\\
w'(1) =& g'(3) g'(1)
\\
\\
w'(1) =& \left( \frac{2 - 0}{5 - 2} \right) \left( \frac{0 - 6}{2 - 0} \right)
\\
\\
w'(1) =& \left( \frac{2}{3} \right) (-3)
\\
\\
w'(1) =& -2

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...