Sunday, December 1, 2019

log_3x=log_9(6x) Solve the equation.

To solve the equation log_3(x)=log_9(6x), we may apply logarithm properties.
Apply the logarithm property: log_a(b)= (log_c(b))/log_c(a) on log_3(x) , we get:
(log_9(x))/(log_9(3))=log_9(6x)
Let 3 =sqrt(9) = 9^(1/2)
(log_9(x))/(log_9(9^(1/2)))=log_9(6x)
Apply the logarithm property: log(x^n)= n*log(x) and log_a(a)=1 on log_9(9^(1/2)) .
(log_9(x))/(1/2log_9(9))=log_9(6x)
(log_9(x))/(1/2*1)=log_9(6x)
(log_9(x))/(1/2)=log_9(6x)
log_9(x)*(2/1)=log_9(6x)
2log_9(x)=log_9(6x)
Apply the logarithm property: log(x*y)=log(x)+log(y) on log_9(6x) .
2log_9(x)=log_9(6)+log_9(x)
2log_9(x)-log_9(x)=log_9(6)
(2-1)log_9(x)=log_9(6)
log_9(x)=log_9(6)
Apply the logarithm property:a^(log_a(x))=x on both sides.
9^(log_9(x))=9^(log_9(6))
x=6
Check: Plug-in x=6 on log_3(x)=log_9(6x).
log_3(6)=?log_9(6*6)
log_3(6)=?log_9(36)
1.631~~1.631
Final Answer:
x=6 is a real solution for the equation log_3(x)=log_9(6x) .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...