Monday, May 6, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 54

Determine the $\displaystyle \lim_{x \to 0^+} (\tan 2x)^x$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

If we let $y = (\tan 2x)^x$, then
$\ln y = x \ln [\tan (2x)]$

So,

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0^+} \ln y &= \lim_{x \to 0^+} x \ln [\tan (2x)]\\
\\
&= \lim_{x \to 0^+} \frac{\ln[\tan (2x)]}{\frac{1}{x}}
\end{aligned}
\end{equation}
$


By applying L'Hospital's Rule

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0^+} \frac{\ln[\tan (2x)]}{\frac{1}{x}} &= \lim_{x \to 0^+} \frac{\frac{2 \sec^2 2x}{\tan 2x}}{\frac{-1}{x}} \\
\\
&= \lim_{x \to 0^+} \frac{\frac{2 \left( \frac{1}{\cos^2 2x}\right)}{\frac{\sin 2x}{\cos 2x}} }{-\frac{1}{x^2}}\\
\\
&= \lim_{x \to 0^+} \frac{\frac{2}{\sin 2x \cos 2x}}{\frac{-1}{x^2}}\\
\\
&= \lim_{x \to 0^+} \frac{2x^2}{\sin 2x \cos 2x}\\
\\
\text{Recall that } \lim_{x \to 0^+} \frac{\sin x}{x} &= 1, \text{ then}\\
\\
\lim_{x \to 0^+} \frac{-2x^2}{\sin 2x \cos 2x} &= -\left[ \lim_{x \to 0^+} \left( \frac{2x}{\sin 2x} \right) \cdot \lim_{x \to 0^+} \left( \frac{x}{\cos 2x} \right)\right]\\
\\
&= - \left[ 1 \cdot \frac{0}{\cos 2(0)} \right] = -[1 \cdot 0] = 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...