Monday, May 6, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 54

Determine the limx0+(tan2x)x. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

If we let y=(tan2x)x, then
lny=xln[tan(2x)]

So,

limx0+lny=limx0+xln[tan(2x)]=limx0+ln[tan(2x)]1x


By applying L'Hospital's Rule

limx0+ln[tan(2x)]1x=limx0+2sec22xtan2x1x=limx0+2(1cos22x)sin2xcos2x1x2=limx0+2sin2xcos2x1x2=limx0+2x2sin2xcos2xRecall that limx0+sinxx=1, thenlimx0+2x2sin2xcos2x=[limx0+(2xsin2x)limx0+(xcos2x)]=[10cos2(0)]=[10]=0

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...