Monday, May 13, 2019

dy/dx = 5e^(-x/2) Use integration to find a general solution to the differential equation

 The given problem: (dy)/(dx) = 5e^(-x/2)  is in form of a first order ordinary differential equation. To evaluate this, we may follow the variable separable differential equation: N(y) dy= M(x)dx
Cross-multiply dx to the other side, we get:
dy= 5e^(-x/2)dx
In this form, we may now proceed to direct integration on both sides:
int dy= int 5e^(-x/2)dx
For the left side, we apply basic integration property: int (dy)=y .
For the right side, we may apply u-substitution by letting: u = -x/2 then du =-1/2 dx or -2du= dx .
Plug-in the values: -x/2=u and dx=-2du , we get:
int 5e^(-x/2)dx=int 5e^(u)* (-2 du)
                  =int -10e^(u)du
Apply the basic integration property: int c*f(x)dx= c int f(x) dx .
int -10e^(u) du=(-10) int e^(u) du
Apply basic integration formula for exponential function:
(-10)int e^(u) du= -10e^(u)+C
Plug-in u=-x/2 on -10e^(u)+C , we get:
int 5e^(-x/2) dx=-10e^(-x/2)+C
Combining the results from both sides, we get the general solution of differential equation as:
y=-10e^(-x/2)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...