Sunday, May 12, 2019

College Algebra, Chapter 8, Review Exercises, Section Review Exercises, Problem 24

Determine the center, vertices, foci and asymptotres of the hyperbola $\displaystyle y^2 = x^2 + 6y$. Then, sketch its graph

$
\begin{equation}
\begin{aligned}
x^2 - y^2 + 6y &= 0 && \text{Subtract } y^2\\
\\
x^2 - (y^2 - 6y) &= 0 && \text{Group terms}\\
\\
x^2 - (y^2 - 6y + 9) &= -9 && \text{Complete the square: Add $\left( \frac{6}{2} \right)^2 = 9$ on the left side and subtract 9 on the right side. }\\
\\
x^2 - (y - 3)^2 &= -9 && \text{Perfect square}\\
\\
\frac{(y - 3)^2}{9} - \frac{x^2}{9} &= 1 && \text{Divide both sides by } -9
\end{aligned}
\end{equation}
$


Now, the hyperbola has the form $\displaystyle \frac{(y - k)^2}{a^2} = \frac{(x-h)^2}{b^2} = 1$ with center at $(h,k)$ and vertical transverse axis.
Since the denominator $y^2$ is positive. It is derived from the hyperbola $\displaystyle \frac{y^2}{9} - \frac{x^2}{9} = 1$ by shifting it $3$ units upward.
This gives $a^2 = 9$ and $b^2 = 9$, so $a = 3, b = 3$ and $c = \sqrt{a^2 + b^2} = \sqrt{9+9} = 3\sqrt{2}$
Then, by applying transformations

$
\begin{equation}
\begin{aligned}
\text{center } & (h,k) && \rightarrow && (0,3)\\
\\
\text{vertices } & (0,a)&& \rightarrow && (0,3) && \rightarrow && (0,3+3) && = && (0,6)\\
\\
& (0,-a)&& \rightarrow && (0,-3) && \rightarrow && (0,-3+3) && = && (0,0)\\
\\
\text{foci } & (0,c)&& \rightarrow && (0,3\sqrt{2}) && \rightarrow && (0,3\sqrt{2}+3) && = && (0,3\sqrt{2}+3)\\
\\
& (-c,0)&& \rightarrow && (0,-3\sqrt{2}) && \rightarrow && (0,-3\sqrt{2}+3) && = && (0,-3\sqrt{2}+3)\\
\\
\text{asymptote } &y = \pm \frac{a}{b}x && \rightarrow && y = \pm x && \rightarrow && y - 3 = \pm x\\
\\
&&&&&&&&& y = \pm x + 3\\
\\
&&&&&&&&& y = x + 3 \text{ and } y = - x + 3
\end{aligned}
\end{equation}
$

Therefore, the graph is

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...