Wednesday, May 22, 2019

y' + ysecx = secx , y(0) = 4 Find the particular solution of the differential equation that satisfies the initial condition

Given y'+y*secx=secx
when the first order linear ordinary Differentian equation has the form of
y'+p(x)y=q(x)
then the general solution is ,
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx)
so,
y'+y*secx=secx--------(1)
y'+p(x)y=q(x)---------(2)
on comparing both we get,
p(x) = secx and q(x)=secx
so on solving with the above general solution we get:
y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)
=((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)
first we shall solve
e^(int secx dx)=e^(ln(secx +tanx)) = secx+tanx     
so
proceeding further, we get
y(x) =((int e^(int secx dx) *(secx)) dx +c)/e^(int secx dx)
=(int ((secx+tanx)*(secx)) dx +c)/(secx+tanx)
=(int ((sec^2x+tanx*(secx)) dx +c)/(secx+tanx)
=(int (sec^2x) dx+int (tanx*(secx)) dx +c)/(secx+tanx)
=(tanx+secx +c)/(secx+tanx)
so y(x)=(tanx+secx +c)/(secx+tanx)=1 +c/(secx+tanx)
 
Now we have to find the particular solution at y(0) =4
so y(x) =1 +c/(secx+tanx)
=> y(0) = 1+c/(sec(0)+tan(0)) =4
=> 1+c=4
c=3
so the particular solution is
y(x) = 1+ 3/(secx+tanx)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...