Tuesday, February 5, 2019

College Algebra, Chapter 1, 1.4, Section 1.4, Problem 64

Find all solutions of the equation $x^2 - 3x + 3 = 0$ and express them in the form $a + bi$.


$
\begin{equation}
\begin{aligned}

x^2 - 3x + 3 =& 0
&& \text{Given}
\\
\\
x^2 - 3x =& -3
&& \text{Subtract } 3
\\
\\
x^2 - 3x + \frac{9}{4} =& -3 + \frac{9}{4}
&& \text{Complete the square: add } \left( \frac{-3}{2} \right)^2 = \frac{9}{4}
\\
\\
\left( x - \frac{3}{2} \right)^2 =& \frac{-3}{4}
&& \text{Perfect square}
\\
\\
x - \frac{3}{2} =& \pm \sqrt{\frac{-3}{4}}
&& \text{Take the square root}
\\
\\
x - \frac{3}{2} =& \pm \sqrt{\frac{3i^2}{4}}
&& \text{Recall that } i^2 = -1
\\
\\
x =& \frac{3}{2} \pm \frac{\sqrt{3}}{2} i
&& \text{Add } \frac{3}{2} \text{ and simplify}
\\
\\
\left( x - \left( \frac{3 + \sqrt{3} i}{2} \right) \right)&\left( x - \left( \frac{3 - \sqrt{3} i}{2} \right) \right) = 0
&&


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...