Thursday, February 14, 2019

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 8

Check whether a.) $x = 2$ or b.) $x = 4$ is a solution of the equation $\displaystyle \frac{1}{x} - \frac{1}{x-4} = 1$

a.) $x = 2$

$
\begin{equation}
\begin{aligned}
\frac{1}{(2)} - \frac{1}{(2) - 4} &= 1 && \text{Substitute } x = 2\\
\\
\frac{1}{2} - \frac{1}{-2} &= 1 && \text{Simplify}\\
\\
\frac{1+1}{2} &= 1 && \text{Get the LCD}\\
\\
\frac{2}{2} &= 1 && \text{Simplifty} \\
\\
1 &= 1
\end{aligned}
\end{equation}
$

So $x = 2$ is the solution to the equation.

b.) $x = 4$

$
\begin{equation}
\begin{aligned}
\frac{1}{(4)} - \frac{1}{(4) -4} &=1 && \text{Substitute } x =4\\
\\
\frac{1}{4} - \frac{1}{4-4} &= 1 && \text{Simplify}\\
\\
\frac{1}{4} - \frac{1}{0} &=1 && \text{Equation is undefined, denomitor is zero}
\end{aligned}
\end{equation}
$

So $x = 4$ is not the solution to the equation.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...