Wednesday, February 27, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 49

Find the first and second derivatives of $H(t) = \tan 3t$
Solving for the first derivative of the given function


$
\begin{equation}
\begin{aligned}
H'(t) &= \frac{d}{dt} ( \tan 3t)\\
\\
H'(t) &= \sec^2 3t \cdot \frac{d}{dt} (3t)\\
\\
H'(t) &= (\sec^2 3t) (3)(1)\\
\\
H'(t) &= 3\sec^2 3t
\end{aligned}
\end{equation}
$



Solving for the second derivative of the given function


$
\begin{equation}
\begin{aligned}
H''(t) &= \frac{d}{dt} (3\sec^2t)\\
\\
H''(t) &= 3 \cdot \frac{d}{dt} ( 3\sec3t)^2\\
\\
H''(t) &= (3)(2)(\sec 3t) \cdot \frac{d}{dt} (\sec 3t)\\
\\
H''(t) &= 6 \sec 3t \cdot \sec 3t \tan 3t \cdot \frac{d}{dt}(3t)\\
\\
H''(t) &= 6 \sec 3t \cdot \sec 3t \tan 3t \cdot 3\\
\\
H''(t) &= 18 \sec^2(3t)\tan(3t)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...