Saturday, February 23, 2019

Calculus of a Single Variable, Chapter 8, 8.2, Section 8.2, Problem 20

Given to solve,
int x^3e^(x^2)/(x^2+1)^2 dx
let t = x^2 => dt = 2x dx
so,
int x^3e^(x^2)/(x^2+1)^2 dx
= int t*x*e^(t)/(t+1)^2 dx
=int t*e^(t)/(t+1)^2 (xdx)
=int t*e^(t)/(t+1)^2 (1/2)dt
let u = t e^t => u'= e^t + te^t
and v'=(1/(t+1)^2)
=> v' = (t+1)^(-2)
so v=(t+1)^(-2+1) /(-2+1) = (t+1)^(-1) /(-1)
=> v= (-1)/(t+1)
so , applying integraion by parts we get ,
int uv' = uv - int u'v
so ,
int t*e^(t)/(t+1)^2 (1/2)dt
= (1/2)[(t e^t )((-1)/(t+1)) - int (e^t + te^t)((-1)/(t+1)) dt]
= (1/2)[(-(t e^t )/(t+1)) + int (e^t + te^t)((1)/(t+1)) dt]
=(1/2)[(-(t e^t )/(t+1)) + int (e^t)(1 + t)((1)/(t+1)) dt]
=(1/2)[(-(t e^t )/(t+1)) + int (e^t) dt]
=(1/2)[(-(t e^t )/(t+1)) + (e^t)] +c
but t = x^2
so,
1/2[(-(t e^t )/(t+1)) + (e^t)] +c
=1/2[((-x^2 e^(x^2) )/(x^2+1)) + (e^(x^2))] +c
= 1/2(e^(x^2)(-x^2 + x^2+1)/(x^2+1)) + c
=1/2(e^(x^2)/(x^2+1)) + c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...