Friday, February 22, 2019

College Algebra, Chapter 2, 2.3, Section 2.3, Problem 46

Solve the equation $16x^3 + 16x^2 = x + 1 $ graphically on the interval $[-2,2]$. State each answer correct to two decimals.

$
\begin{equation}
\begin{aligned}
16x^3 + 16x^2 &= x + 1\\
\\
16x^3 + 16x^2 - x - 1 &= 0 && \text{Subtract } x \text{ and } 1
\end{aligned}
\end{equation}
$




Graphically, the equation $16x^3 + 16x^2 - x - 1$ is equal to 0 at $ x \approx -1$, $x \approx - 0.25$ and $x \approx 0.25$


$
\begin{equation}
\begin{aligned}
16x^3 + 16x^2 - x - 1 &= 0 && \text{Model}\\
\\
\left( 16x^3 + 16x^2 \right) - (x + 1) &= 0 && \text{Group terms}\\
\\
16x^2 (x + 1) - (x + 1 ) &= 0 && \text{Factor out } 16x^2\\
\\
(16x^2 - 1)(x +1) &= 0 && \text{Factor out } 16x^2 - 1\\
\\
16x^2 - 1 &= \text{ and } x+1 = 0 && \text{Zero product property}\\
\\
x &= \pm \sqrt{\frac{1}{16}} \text{ and } x = -1 && \text{Solve for } x
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...