Sunday, April 8, 2018

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 26

Evaluate $\displaystyle \int^{\sqrt{3}}_1 \arctan \left( \frac{1}{x} \right) dx$ by using Integration by parts.
If we let $\displaystyle u = \arctan \left( \frac{1}{x} \right)$ and $dv = dx$, then
$\displaystyle du = \frac{\frac{d}{dx}\left(\frac{1}{x}\right)}{1 + \left( \frac{1}{x} \right)^2} = \frac{-\frac{1}{x^2}}{1 + \frac{1}{x^2}} = \frac{-1}{x^2+1} dx \text{ and } v = x$

So,

$
\begin{equation}
\begin{aligned}
\text{so, } \int^{\sqrt{3}}_1 \arctan \left( \frac{1}{x} \right) dx = uv - \int vdu &= x \arctan \left( \frac{1}{x} \right) - \int x \left( \frac{-1}{x^2+1} \right) dx\\
\\
&= x \arctan \left( \frac{1}{x} \right) + \int \frac{x}{x^2+1} dx

\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int \frac{x}{x^2+1} dx$, we let $u_1 = x^2 +1$ so $du_1 = 2x dx$

$
\begin{equation}
\begin{aligned}
\int \frac{x}{x^2 + 1} dx = \int \frac{1}{u_1} \left( \frac{du_1}{2} \right) = \frac{1}{2} \int \frac{du_1}{u_1} &= \frac{1}{2} \ln u_1\\
\\
&= \frac{1}{2} \ln \left( x^2 + 1 \right)
\end{aligned}
\end{equation}
$


Going back to the first equation,
$\displaystyle \int^{\sqrt{3}}_1 \arctan \left( \frac{1}{x} \right) dx = x \arctan \left( \frac{1}{x} \right) + \frac{1}{2} \ln (x^2 +1)$
Evaluating from $x = 1$ to $x = \sqrt{3}$;
$\displaystyle \int^{\sqrt{3}}_1 \arctan \left( \frac{1}{x} \right) = \frac{\sqrt{3}\pi}{6} - \frac{\pi}{4} + \ln \sqrt{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...