Friday, April 27, 2018

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 40

Find $y'$ of $y = \sin^2 \left( \cos \sqrt{\sin 'pi x}\right)$


$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left[ \sin^2 \left( \cos \sqrt{\sin 'pi x}\right) \right]\\
\\
y' &= \frac{d}{dx} \left[ \sin^2 \left( \cos \sqrt{\sin 'pi x}\right) \right]^2\\
\\
y' &= 2 \sin \left( \cos \sqrt{\sin \pi x} \right) \frac{d}{dx} [\sin(\cos\sqrt{\sin \pi x})]\\
\\
y' &= 2 \sin (\cos\sqrt{\sin \pi x}) \cdot (\cos \sqrt{\sin \pi x}) \frac{d}{dx} (\cos\sqrt{\sin \pi x})\\
\\
y' &= 2 \sin (\cos\sqrt{\sin \pi x}) \cdot (\cos \sqrt{\sin \pi x}) \cdot (-\sin\sqrt{\sin \pi x}) \frac{d}{dx} (\sqrt{\sin \pi x})\\
\\
y' &= 2 \sin (\cos\sqrt{\sin \pi x}) \cdot (\cos \sqrt{\sin \pi x}) \cdot (-\sin\sqrt{\sin \pi x}) \frac{d}{dx} (\sin \pi x)^{\frac{1}{2}}\\
\\
y' &= 2 \sin (\cos\sqrt{\sin \pi x}) \cdot (\cos \sqrt{\sin \pi x}) \cdot (-\sin\sqrt{\sin \pi x}) \cdot \left( \frac{1}{2}\right)(\sin \pi x)^{\frac{-1}{2}} \frac{d}{dx} ( \sin \pi x)\\
\\
y' &= 2 \sin (\cos\sqrt{\sin \pi x}) \cdot (\cos \sqrt{\sin \pi x}) \cdot (-\sin\sqrt{\sin \pi x}) \cdot \left( \frac{1}{2}\right)(\sin \pi x)^{\frac{-1}{2}} \cdot (\cos \pi x) \frac{d}{dx} (\pi x)\\
\\
y' &= \cancel{2} \sin (\cos\sqrt{\sin \pi x}) \cdot (\cos \sqrt{\sin \pi x}) \cdot (-\sin\sqrt{\sin \pi x}) \cdot \left( \frac{1}{\cancel{2}}\right)(\sin \pi x)^{\frac{-1}{2}} \cdot (\cos \pi x)(\pi)\\
\\
y' &= \frac{-\pi \sin(\cos\sqrt{\sin \pi x})\cos(\cos\sqrt{\sin \pi x}) \sin \sqrt{\sin \pi x} \cos \pi x}{(\sin \pi x)^{\frac{1}{2}}} \qquad \text{or} \qquad y' = \frac{-\pi \sin(\cos\sqrt{\sin \pi x})\cos(\cos\sqrt{\sin \pi x}) \sin \sqrt{\sin \pi x} \cos \pi x}{\sqrt{\sin \pi x}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...