Friday, April 27, 2018

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 46

Recall indefinite integral follows int f(x) dx = F(x)+C
where:
f(x) as the integrand
F(x) as the antiderivative of f(x)
C as the constant of integration.
From the table of integrals, we follow the formula:
sqrt(x^2+-a^2) dx = 1/2xsqrt(x^2+-a^2)+-1/2a^2ln|x+sqrt(x^2+-a^2)|
From the given problem int_0^3 sqrt(x^2+16) dx , we have a addition sign (+) in between terms inside the square root sign. Then, we follow the formula:
int sqrt(x^2+a^2) dx = 1/2xsqrt(x^2+a^2)+1/2a^2ln|x+sqrt(x^2+a^2)|
Take note that we can express 16 = 4^2 then the given problem becomes:int_0^3 sqrt(x^2+4^2) dx .
The x^2 +4^2 resembles the x^2 +a^2 in the formula. Then by comparison, the corresponding values are: x=x and a=4.
Plug-in x=x and a=4 on the formula, we get:
int_0^3 sqrt(x^2+16) dx =[1/2xsqrt(x^2+4^2)+1/2*4^2ln|x+sqrt(x^2+4^2)| ]|_0^3
=[1/2xsqrt(x^2+16)+1/2*16ln|x+sqrt(x^2+16)|]|_0^3
=[1/2xsqrt(x^2+16)+8ln|x+sqrt(x^2+16)|]|_0^3
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
[1/2xsqrt(x^2+16)+8ln|x+sqrt(x^2+16)|]|_0^3
=[1/2*3sqrt(3^2+16)+8ln|3+sqrt(3^2+16)|]-[1/2*0sqrt(0^2+16)+8ln|0+sqrt(0^2+16)|]
=[3/2sqrt(9+16)+8ln|3+sqrt(9+16)|]-[0*sqrt(0+16)+8ln|0+sqrt(0+16)|]
=[3/2*5+8ln|3+5|]-[0*4+8ln|0+4|]
=[15/2+8ln|8|]-[0+8ln|4|]
=15/2+8ln|8| -0-8ln|4|
=15/2+8ln|8| - 8ln|4|
=15/2+8(ln|8| - ln|4|)
Apply natural logarithm property: ln(x)- ln(y) = ln(x/y) .
=15/2+8ln|8/4|
=15/2+8ln|2|
Apply natural logarithm property: n*ln(x) = ln(x^n) .
=15/2+ln|2^8|
=15/2+ln|256| or 13.05 ( approximated value)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...