Tuesday, January 3, 2017

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 26

To solve the indefinite integral, we follow int f(x) dx = F(x) +C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
For the given integral problem: int sqrt(25x^2+4)/x^4dx , we may apply integration by parts: int u *dv = uv - int v *du .
Let:
u =sqrt(25x^2+4)
Apply Law of Exponent: sqrt(x) = x^(1/2) , we get: u =(25x^2+4)^(1/2)
To find the derivative of u , we may apply Power rule for derivative: d/(dx) u^n= n* u^(n-1) * d/(dx)(u)
u' = 1/2 *(25x^2+4)^(1/2-1) * d/(dx) (25x^2+4)
u' = 1/2*(25x^2+4)^(-1/2)* (50xdx)
u' = 25x(25x^2+4)^(-1/2)dx
Apply Law of exponent: 1/x^n =x^(-n) .
u' = (25x)/(25x^2+4)^(1/2)dx or(25x)/sqrt(25x^2+4)dx
Let: v' = 1/x^4 dx
To find the integral of v' , we apply Law of exponent: 1/x^n =x^(-n) and Power rule for integration:int x^n dx = x^(n+1)/(n+1) +C .
v = int v'
= int 1/x^4 dx
= int x^(-4) dx
= x^(-4+1)/(-4+1)
= x^(-3)/(-3)
= - 1/(3x^3)
Apply the formula for integration by parts using the following values: u =sqrt(25x^2+4) , u' =(25x)/sqrt(25x^2+4) dx , v'= 1/x^4 dx and v=- 1/(3x^3) .
int sqrt(25x^2+4)/x^4dx =sqrt(25x^2+4)*-( 1/(3x^3)) - int(25x)/sqrt(25x^2+4)*(- 1/(3x^3))dx
=-sqrt(25x^2+4)/(3x^3) - int -25/(3x^2sqrt(25x^2+4))dx
To evaluate the integral part, we may apply the basic integration property: int c*f(x) dx = c int f(x) dx .
int -(25x)/(3x^3sqrt(25x^2+4))dx =-25/3int 1/(x^2sqrt(25x^2+4))dx
The integral resembles one of the formulas from the integration table for rational function with roots. We follow:
int (du)/(u^2sqrt(u^2+a^2)) = -sqrt(u^2+a^2)/(a^2x) +C
For easier comparison, we may apply u-substitution by letting: u^2 = 25x^2 or (5x)^2 then u=5x and du = 5dx or (du)/5 = dx . When we let u^2 =25x^2 , it can be rearrange as x^2=u^2/25 . Applying the values, the integral becomes:
-25/3int 1/(x^2sqrt(25x^2+4))dx =-25/3int 1/((u^2/25)sqrt(u^2+4))*(du)/5
=-25/3int 25/(5u^2sqrt(u^2+4))du
= -125/3int 1/(u^2sqrt(u^2+4))dx
By comparing "u^2sqrt(u^2+a^2) " with "u^2sqrt(u^2+4) ", we determine the corresponding value: a^2=4 . Applying the aforementioned integration formula for rational function with roots, we get:
-125/3int 1/(u^2sqrt(u^2+4))dx =-125/3* [-sqrt(u^2+4)/(4u)] +C
=(125sqrt(u^2+4))/(12u) +C
Plug-in u^2= 25x^2 and u =5x on (125sqrt(u^2+4))/(12u) +C , we get the indefinite integral:
int -25/(3x^2sqrt(25x^2+4))dx=(125sqrt(25x^2+4))/(12*5x) +C
=(25sqrt(25x^2+4))/(12x) +C .
For the complete indefinite integral, we get:
int sqrt(25x^2+4)/x^4dx =-sqrt(25x^2+4)/(3x^3) - int -25/(3x^2sqrt(25x^2+4))dx
=-sqrt(25x^2+4)/(3x^3)-(25sqrt(25x^2+4))/(12x) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...