Tuesday, January 31, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 101

How many lines through the point $(0,c)$ are normal lines to the parabola $y=x^2$ if $\displaystyle c > \frac{1}{2}$?
What if $\displaystyle \leq \frac{1}{2}$?

Recall that the slope of the normal line is equal to the negative reciprocal of the slope of the tangent line. So,


$
\begin{equation}
\begin{aligned}
m_T &= - \frac{1}{m_N}\\
m_T &= \frac{dy}{dx} = \frac{d}{dx} (x^2)\\
m_T &= 2x\\
m_N &= - \frac{1}{2x}
\end{aligned}
\end{equation}
$


We can get the equation of the normal lines by using the slopes formula at the point of tangency
at $(x,x^2)$ and at $(0,c)$ and equate it with the slope of the normal line. So...


$
\begin{equation}
\begin{aligned}
m_N &= \frac{y_2-y_1}{x_2-x_1}\\
\frac{-1}{2x} &= \frac{c-x^2}{0-x} && \text{(Applying cross multiplication)}\\
x &= 2xc - 2x^3\\
2x^3 - 2xc + x &= 0\\
x(2x^2-2c+1) &= 0
\end{aligned}
\end{equation}
$


Its either $x=0$ and $2x^2-2c+1=0$


$
\begin{equation}
\begin{aligned}
2x^2 - 2c + 1 &= 0\\
\frac{\cancel{2}x^2}{\cancel{2}} &= \frac{2c-1}{2}\\
\sqrt{x^2} &= \sqrt{c - \frac{1}{2}}\\
x &= \pm \sqrt{c-\frac{1}{2}}
\end{aligned}
\end{equation}
$


If $\displaystyle c > \frac{1}{2}$ let's say $c=2$, $\displaystyle x=\pm\sqrt{2 - \frac{1}{2}} \Longrightarrow
x = + \frac{\sqrt{6}}{2}$ and $\displaystyle x = \frac{-\sqrt{6}}{2}$

You will have 2 normal lines. However, if $\displaystyle c \leq \frac{1}{2}$, let's say $\displaystyle c=\frac{1}{2}$
and $\displaystyle c = -\frac{1}{2}$, $\displaystyle x = \sqrt{\frac{1}{2}-\frac{1}{2}} = 0$ and
$\displaystyle x = \sqrt{-\frac{1}{2}- \frac{1}{2}} = \sqrt{-\frac{1}{4}}$, there will be only 1 normal line since
square root of a negative value is undefined.

Therefore,

$
\begin{equation}
\begin{aligned}
& \text{if } c > \frac{1}{2}, \quad \text{3 normal lines} && (\text{including } x = 0 \text{ we've had here } x(2x^2-2c+1)=0 )\\
& \text{if } c \leq \frac{1}{2}, \quad \text{1 normal line}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...