Monday, January 30, 2017

Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 24

Use the guidelines of curve sketching to sketch the curve. $\displaystyle y = x\sqrt{2-x^2}$

The guidelines of Curve Sketching
A. Domain.
We know that $f(x)$ contains square root function that is defined only for positive values. Hence,

$
\begin{equation}
\begin{aligned}
2 - x^2 &\leq 0 \\
x^2 &\geq 2
\end{aligned}
\end{equation}
$

We have,
$-\sqrt{2} \leq x \leq \sqrt{2}$
Therefore, the domain is $[-\sqrt{2},\sqrt{2}]$


B. Intercepts.
Solving for $y$-intercept, when $x= 0 $
$ y = 0 \sqrt{2-0^2} = 0$
Solving for $x$-intercept, when $y = 0$
$0 = x\sqrt{2-x^2}$
We have, $x = 0$ and $ x = -\sqrt{2}$ and $x = \sqrt{2}$

C. Symmetry.
Since $f(-x) = -f(x)$, the function is symmetric to origin.

D. Asymptotes.
The function has no asymptotes.

E. Intervals of Increase or Decrease.
If we take the derivative of $f(x)$, by using Chain Rule and Product Rule.

$
\begin{equation}
\begin{aligned}
f'(x) &= x \left( \frac{1}{2}(2-x^2)^{\frac{-1}{2}} (-2x) \right) + 1 (2-x^2)^{\frac{1}{2}}\\
\\
f'(x) &= \frac{-x^2}{(2-x^2)^{\frac{1}{2}}} + (2-x^2)^{\frac{1}{2}} = \frac{-x^2+2-x^2}{(2-x^2)^{\frac{1}{2}}}\\
\\
f'(x) &= \frac{2-2x^2}{\sqrt{2-x^2}}
\end{aligned}
\end{equation}
$

when $f'(x) = 0$

$
\begin{equation}
\begin{aligned}
0 & = \frac{2-2x^2}{\sqrt{2-x^2}}\\
\\
0 &= 2- 2x^2\\
\\
x^2 &= 1
\end{aligned}
\end{equation}
$

The critical numbers are $x = 1 $ and $x = -1$

Hence, the intervals of increase and decrease are

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x) & f\\
\hline\\
-\sqrt{2} < x < -1 & - & \text{decreasing on } (-\sqrt{2}, -1)\\
\hline\\
-1 < x < 1 & + & \text{increasing on } (-1,1)\\
\hline\\
1 < x < \sqrt{2} & - & \text{decreasing on } (1,\sqrt{2})\\
\hline
\end{array}
$


F. Local Maximum and Minimum Values.
since $f'(x)$ changes from negative to positive at $x = -1$, $f(-1) = -1$ is a local minimum. On the other hand, since $f'(x)$ changes from positive to negative at $x =1,$ $f(1) = 1$ is a local maximum.

G. Concavity and Points of Inflection.

$
\begin{equation}
\begin{aligned}
\text{if } f'(x) &= \frac{2-2x^2}{\sqrt{2-x^2}} \quad \text{, then by using Quotient Rule and Chain Rule.}\\
\\
f''(x) &= \frac{\sqrt{2-x^2}(-4x)-(2-2x^2)\left( \frac{1}{2}(2-x^2)(-2x) \right)}{(\sqrt{2-x^2})^2}\\
\\
f''(x) &= \frac{x\cancel{(2-x^2)}\left[ -4(2-x^2)^{\frac{-1}{2}} + (2-2x^2)\right]}{\cancel{(2-x^2)}}\\
\\
f''(x) &= \frac{-4x}{\sqrt{2-x^2}} + x(2-x^2)
\end{aligned}
\end{equation}
$


when $f''(x) = 0$,
$\displaystyle 0 = \frac{-4x}{\sqrt{2-x^2}} + x(2-2x^2)$
we have $x= 0 $ as inflection point.
Thus, the concavity can be determined by dividing the interval to...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity}\\
\hline\\
-\sqrt{2} < x < 0 & - & \text{Downward}\\
\hline\\
0 < x < \sqrt{2} & + & \text{Upward}\\
\hline
\end{array}
$


H. Sketch the Graph.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...