Wednesday, October 5, 2016

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 7

The graph of function $g$ is given below, state the value of each quantity, if it exists. If it does not exist, explain why.


$
\begin{equation}
\begin{aligned}
\text{a.) }& \lim\limits_{t \rightarrow 0^-} g(t) &
\text{b.) }& \lim\limits_{t \rightarrow 0^+} g(t) &
\text{c.) }& \lim\limits_{t \rightarrow 0} g(t)\\

\text{d.) }& \lim\limits_{t \rightarrow 2^-} g(t) &
\text{e.) }& \lim\limits_{t \rightarrow 2^+} g(t) &
\text{f.) }& \lim\limits_{t \rightarrow 2} g(t) \\

\text{g.) }& g(t) &
\text{h.) }& \lim\limits_{t \rightarrow 4} g(t)
\end{aligned}
\end{equation}
$





a. According to the graph given $\lim\limits_{t \rightarrow 0^-} g(t) = -1$

b. According to the graph given $\lim\limits_{t \rightarrow 0^+} g(t) = -2$

c. According to the graph given $\lim\limits_{t \rightarrow 0} g(t)$ does not exist because
$\lim\limits_{t \rightarrow 0^-} g(t)$ doest not equal $\lim\limits_{t \rightarrow 0^+} g(t)$

d. According to the graph given $\lim\limits_{t \rightarrow 2^-} g(t) = 2$

e. According to the graph given $\lim\limits_{t \rightarrow 2^+} g(t) = 0$

f. According to the graph given $\lim\limits_{t \rightarrow 2} g(t)$ does not exist because left and right limits are different.

g. According to the graph given $g(2) = 1$

h. According to the graph given $\lim\limits_{t \rightarrow 4} g(t) = 3$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...