Sunday, October 9, 2016

College Algebra, Chapter 4, Chapter Review, Section Review, Problem 14

Graph the polynomial $P(x) = -3 (x + 2)^5 + 96$ by transforming an appropriate graph of the form $y = x^5$ and show all the $x$ and $y$ intercepts clearly.

The graph of $P(x) = -3 (x + 2)^5 + 96$ is obtained from the graph of $y = x^5$ that is shifted $2$ units to the left,
reflected about the $x$ axis and stretched vertically by a factor of $3$. Then, the result is shifted $96$ units upward. To determine the $x$ intercept, we set $y = 0$ so


$
\begin{equation}
\begin{aligned}

0 =& -3 (x + 2)^5 + 96
\\
\\
3 (x + 2)^5 =& 96
\\
\\
(x + 2)^5 =& 32
\\
\\
x + 2 =& \sqrt[5]{32}
\\
\\
x + 2 =& 2
\\
\\
x =& 0


\end{aligned}
\end{equation}
$


Next, to determine the $y$ intercept, we set $x = 0$.


$
\begin{equation}
\begin{aligned}

P(0) =& -3 (0 + 2)^5 + 96
\\
\\
=& -3(32) + 96
\\
\\
=& -96 + 96
\\
\\
=& 0

\end{aligned}
\end{equation}
$


The $y$ intercept is .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...