Tuesday, May 3, 2016

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 39

Differentiate $\displaystyle y = \sqrt[3]{t} (t^2 + t + t^{-1})$



$
\begin{equation}
\begin{aligned}

y' =& (t)^{\frac{1}{3}} (t^2 + t + t^{-1})
&& \text{Expand the equation}
\\
\\
y' =& t^{\frac{7}{3}} + t^{\frac{4}{3}} + t^{\frac{-2}{3}}
&& \text{}
\\
\\
y' =& \frac{d}{dt} (t^{\frac{7}{3}}) + \frac{d}{dt} (t^{\frac{4}{3}}) + \frac{d}{dt} (t^{\frac{-2}{3}})
&& \text{Apply Power Rule}
\\
\\
y' =& \frac{7}{3} t^{\frac{4}{3}} + \frac{4}{3} t^{\frac{1}{3}} - \frac{2}{3} t^{\frac{-5}{3}}
&& \text{Simplify the equation}
\\
\\
y' =& \frac{7}{3} t^{\frac{4}{3}} + \frac{4}{3} t^{\frac{1}{3}} - \frac{2}{3t^{\frac{5}{3}}}
&& \text{Get the LCD}
\\
\\
y' =& \frac{7 t^{\frac{9}{3}} + 4 t^{\frac{6}{3}} - 2}{3 t^{\frac{5}{3}}}
&& \text{Simplify the equation}
\\
\\
y' =& \frac{7t^3 + 4t^2-2}{3t^{\frac{5}{3}}}
&& \text{}
\\
\\


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...