Friday, May 20, 2016

int cosx/sqrt(sin^2x+1) dx Use integration tables to find the indefinite integral.

Recall that indefinite integral follows: int f(x) dx = F(x)+C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as constant of integration.
To evaluate given integral problem: int cos(x)/sqrt(sin^2(x)+1)dx or int (cos(x)dx)/sqrt(sin^2(x)+1) , we may apply u-substitution by letting:
u = sin(x) then du =cos(x) dx .
Plug-in the values ,  the integral becomes:
int (cos(x)dx)/sqrt(sin^2(x)+1)=int (du)/sqrt(u^2+1) or int (du)/sqrt(u^2+1^2)
The integral resembles one of the formulas from the integration table for rational function with roots. We follow:
int (dx)/sqrt(x^2+a^2) = ln|x+sqrt(x^2+a^2)|+C
By comparing x^2+a^2 with u^2+1^2 , we determine the corresponding values as: x=u and a=1.
Applying the values on the integral formula for rational function with roots, we get:
int (du)/sqrt(u^2+1^2)=ln|u+sqrt(u^2+1^2)| +C
                                =ln|u+sqrt(u^2+1)| +C
Plug-in u = sin(x) on  ln|u+sqrt(u^2+1)| +C , we get the indefinite integral as:
int cos(x)/sqrt(sin^2(x)+1)dx=ln|sin(x)+sqrt(sin^2(x)+1)| +C
 
 Aside from this, we can also consider the another formula from integration table:
int 1/sqrt(u^2+1)du = arcsinh(u) +C
Plug-in u = sin(x) on arcsinh(u) +C , we get another form of indefinite integral as:
int cos(x)/sqrt(sin^2(x)+1)dx=arcsinh(sin(x)) +C
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...