Monday, May 30, 2016

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 32

Evaluate t0essin(ts)ds by using Integration by parts.
If we let u=sin(ts) and dv=esds, then
du=cos(ts)dsv=es

So,

t0essin(ts)ds=uvvdu=essin(ts)es(cos(ts))ds=essin(ts)+escos(ts)ds


To evaluate escos(ts)ds, we must use Integration by parts once more...

Hence, if we let u1=cos(ts) and dv1=esds , thendu1=sin(ts)dsv1=es


So, escos(ts)ds=u1v1v1du1=escos(ts)essin(ts)ds

Going back to the first equation,
t0essin(ts)ds=essin(ts)+[escos(ts)essin(ts)ds]

Combining like terms

2t0essin(ts)ds=essin(ts)+escos(ts)t0essin(ts)ds=essin(ts)+escos(ts)2=es2[sin(ts)+cos(ts)]


Evaluating from 0 to t, we have

=et212sint12cost=12(etsintcost)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...