Monday, May 30, 2016

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 32

Evaluate $\displaystyle \int^t_0 e^s \sin (t-s) ds$ by using Integration by parts.
If we let $u = \sin (t-s)$ and $dv = e^s ds$, then
$du = - \cos (t-s) ds \quad v = e^s$

So,

$
\begin{equation}
\begin{aligned}
\int^t_0 e^s \sin (t-s) ds &= uv - \int v du = e^s \sin (t -s) - \int e^s \left( -\cos (t-s) \right) ds\\
\\
&= e^s \sin (t-s) + \int e^s \cos (t-s) ds
\end{aligned}
\end{equation}
$


To evaluate $\displaystyle \int e^s \cos (t - s) ds$, we must use Integration by parts once more...

$
\begin{equation}
\begin{aligned}
\text{Hence, if we let } u_1 &= \cos (t -s ) &&\text{ and }& dv_1 &= e^s ds \text{ , then} \\
\\
du_1 &= \sin (t-s) ds &&& v_1 &= e^s
\end{aligned}
\end{equation}
$


So, $\displaystyle \int e^s \cos (t-s) ds = u_1 v_1 - \int v_1 du_1 = e^s \cos (t-s) - \int e^s \sin (t-s) ds$

Going back to the first equation,
$\displaystyle \int^t_0 e^s \sin (t-s) ds = e^s \sin (t-s) + \left[ e^s \cos (t-s) - \int e^s \sin (t-s) ds \right]$

Combining like terms

$
\begin{equation}
\begin{aligned}
2 \int^t_0 e^s \sin (t-s) ds &= e^s \sin (t-s) + e^s \cos (t-s)\\
\\
\int^t_0 e^s \sin (t-s) ds &= \frac{e^s \sin (t-s) + e^s \cos (t-s)}{2}\\
\\
&= \frac{e^s}{2} [\sin(t-s) + \cos (t-s)]
\end{aligned}
\end{equation}
$


Evaluating from 0 to $t$, we have

$
\begin{equation}
\begin{aligned}
&= \frac{e^t}{2} - \frac{1}{2} \sin t - \frac{1}{2} \cos t\\
\\
&= \frac{1}{2} \left( e^t - \sin t - \cos t \right)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...