Tuesday, May 31, 2016

Calculus of a Single Variable, Chapter 5, 5.6, Section 5.6, Problem 54

The derivative of y in terms of x is denoted by (dy)/(dx) or y’'
For the given problem: y = xarctan(2x) -1/4ln(1+4x^2) , we may apply the basic differentiation property:
d/(dx) (u-v) = d/(dx) (u) - d/(dx) (v)
Then the derivative of the function can be set-up as:
d/(dx)y =d/(dx)[ xarctan(2x) -1/4ln(1+4x^2)]
y ' = d/(dx) xarctan(2x) -d/(dx) 1/4ln(1+4x^2)

For the derivative of d/(dx)[ xarctan(2x) , we apply the Product Rule: d/(dx)(u*v) = u’*v =+u*v’ .
d/(dx)[ xarctan(2x)] = d/(dx)(x) *arctan(2x)+ x * d/(dx)arctan(2x) .
Let u=x then u' = 1
v=arctan(2x) then dv= 2/(4x^2+1)
Note: d/(dx)arctan(u)= (du)/(u^2+1)

Then,
d/(dx)(x) *arctan(2x)+ x * d/(dx)arctan(2x)
= 1 * arctan(2x) +x * 2/(4x^2+1)
= arctan(2x) +(2x)/(4x^2+1)

For the derivative of d/(dx) 1/4ln(1+4x^2) , we apply the basic derivative property:
d/(dx) c*f(x) = c d/(dx) f(x) .
Then,
d/(dx) 1/4ln(1+4x^2)= 1/4 d/(dx) ln(1+4x^2)
Apply the basic derivative formula for natural logarithm function: d/(dx) ln(u)= (du)/u .
Let u =1+4x^2 then du = 8x
1/4d/(dx) ln(1+4x^2) = 1/4 *8x/(1+4x^2)
=(2x)/(1+4x^2)

Combining the results, we get:
y' = d/(dx)[ xarctan(2x)] -d/(dx)[ 1/4ln(1+4x^2)]
y ' = [arctan(2x) +(2x)/(4x^2+1)] - (2x)/(1+4x^2)
y ' = arctan(2x) +(2x)/(4x^2+1) - (2x)/(1+4x^2)
y ' = arctan(2x) +0
y'=arctan(2x)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...